Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Neth Heart J ; 30(6): 312-318, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1750846

ABSTRACT

BACKGROUND AND PURPOSE: The electrocardiogram (ECG) is frequently obtained in the work-up of COVID-19 patients. So far, no study has evaluated whether ECG-based machine learning models have added value to predict in-hospital mortality specifically in COVID-19 patients. METHODS: Using data from the CAPACITY-COVID registry, we studied 882 patients admitted with COVID-19 across seven hospitals in the Netherlands. Raw format 12-lead ECGs recorded within 72 h of admission were studied. With data from five hospitals (n = 634), three models were developed: (a) a logistic regression baseline model using age and sex, (b) a least absolute shrinkage and selection operator (LASSO) model using age, sex and human annotated ECG features, and (c) a pre-trained deep neural network (DNN) using age, sex and the raw ECG waveforms. Data from two hospitals (n = 248) was used for external validation. RESULTS: Performances for models a, b and c were comparable with an area under the receiver operating curve of 0.73 (95% confidence interval [CI] 0.65-0.79), 0.76 (95% CI 0.68-0.82) and 0.77 (95% CI 0.70-0.83) respectively. Predictors of mortality in the LASSO model were age, low QRS voltage, ST depression, premature atrial complexes, sex, increased ventricular rate, and right bundle branch block. CONCLUSION: This study shows that the ECG-based prediction models could be helpful for the initial risk stratification of patients diagnosed with COVID-19, and that several ECG abnormalities are associated with in-hospital all-cause mortality of COVID-19 patients. Moreover, this proof-of-principle study shows that the use of pre-trained DNNs for ECG analysis does not underperform compared with time-consuming manual annotation of ECG features.

2.
Europace ; 23(SUPPL 3):iii561-iii562, 2021.
Article in English | EMBASE | ID: covidwho-1288021

ABSTRACT

Background The electrocardiogram (ECG) is an easy to assess, widely available and inexpensive tool that is frequently used during the work-up of hospitalized COVID-19 patients. So far, no study has been conducted to evaluate if ECG-based machine learning models are able to predict allcause in-hospital mortality in COVID-19 patients. Purpose With this study, we aim to evaluate the value of using the ECG to predict in-hospital all-cause mortality of COVID-19 patients by analyzing the ECG at hospital admission, comparing a logistic regression based approach and a DNN based approach. Secondly, we aim to identify specific ECG features associated with mortality in patients diagnosed with COVID-19. Methods and results We studied 882 patients admitted with COVID-19 across seven hospitals in the Netherlands. Raw-format 12-lead ECGs recorded after admission (<72 hours) were collected, manually assessed, and annotated using pre-defined ECG features. Using data from five out of seven centers (n = 634), two mortality prediction models were developed: (a) a logistic regression model using manually annotated ECG features, and (b) a pre-trained deep neural network (DNN) using the raw ECG waveforms. Data from two other centers (n = 248) were used for external validation. Performance of both prediction models was similar, with a mean area under the receiver operating curve of 0.69 [95%CI 0.55- 0.82] for the logistic regression model and 0.71 [95%CI 0.59-0.81] for the DNN in the external validation cohort. After adjustment for age and sex, ventricular rate (OR 1.13 [95% CI 1.01-1.27] per 10 ms increase), right bundle branch block (3.26 [95% CI 1.15-9.50]), ST-depression (2.78 [95% CI 1.03-7.70]) and low QRS voltages (3.09 [95% CI 1.02-9.38]) remained as significant predictors for mortality. Conclusion: This study shows that ECG-based prediction models at admission may be a valuable addition to the initial risk stratification in admitted COVID-19 patients. The DNN model showed similar performance to the logistic regression that needs time-consuming manual annotation. Several ECG features associated with mortality were identified.

SELECTION OF CITATIONS
SEARCH DETAIL